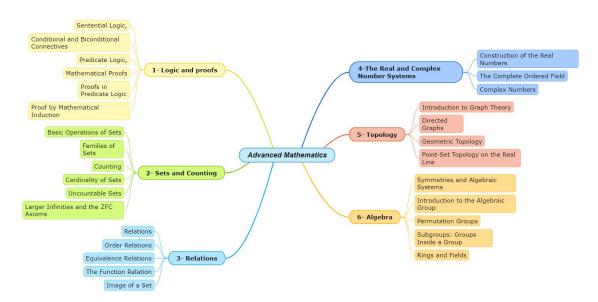


MATH 3215: Introduction to Higher Mathematics

2022 Fall Session	2022	Fall	Session
--------------------------	------	------	---------

Total Class Sessions: 25 Class Sessions Per Week: 5

Total Weeks: 5


Class Session Length (Minutes): 145

Credit Hours: 4

Instructor: Staff Classroom: TBA Office Hours: TBA Language: English

Course Description:

This course is an induction to proofs and designed for students to prepare for the study of advanced mathematics. After practices of problem solving and calculations through previous Math courses, students will learn the language and philosophy of higher mathematics in this course. Topics include logic and proofs, sets and counting, relations, the real and complex number systems, topology, and algebra. The next figure shows the topics in details.

Course Materials:

Textbook:

A Transition to Advanced Mathematics, 8th Edition

Author(s): Douglas Smith, Maurice Eggen, Richard St. Andre

Publisher: Brooks Cole (August 6, 2014)

Language: English ISBN-10: 1285463269 ISBN-13: 978-1285463261

Recommended:

How to Prove It: A Structured Approach, 3rd Edition

Author: Daniel J. Velleman

Publisher: Cambridge University Press; 3rd edition (August 29, 2019)

Language: English

ISBN-10| : † 1108439535 ISBN-13: † 978-1108439534

Course Format and Requirements:

This course has 25 class sessions in total. Each class session is 145 minutes in length. Prereading the relevant chapter and attempting the assigned homework problems prior to each class is strongly recommended. Familiarizing with the course material before class, you will gain a better understanding of the information presented during the class. Students are strongly encouraged to ask questions on things they do not understand. Main learning points will be highlighted from the relevant textbook chapters.

Course Assignments:

Homework:

You are encouraged to work together on problem sets, but each of you must hand in your own work.

Ouizzes:

There will be six 10-20 minute quizzes in total. The quizzes will cover material from in-class handouts and homework.

Exams:

The exams will be closed book and closed notes. Formula sheets will be provided by the Instructor. No make-up exams will be given. Upon prior notification of the Instructor, allowances will be made under extreme circumstances. There will be two midterms and one cumulated final exam.

Course Assessment:

Homework and Quizzes	20%
Midterm Exams 1	20%
Midterm Exams 2	20%
Final Exam	40%
Total	100%

Grading Scale (percentage):

A	\ +	A	A-	B+	В	В-	C +	C	C-	D+	D	D-	F
9	8-	93-	90-	88-	83-	80-	78-	73-	70-	68-	63-	60-	<60
1	.00	97	92	89	87	82	79	77	72	69	67	62	

Academic Integrity:

Students are encouraged to study together, and to discuss lecture topics with one another, but all other work should be completed independently.

Students are expected to adhere to the standards of academic honesty and integrity that are described in the Chengdu University of Technology's *Academic Conduct Code*. Any work suspected of violating the standards of the *Academic Conduct Code* will be reported to the Dean's Office. Penalties for violating the *Academic Conduct Code* may include dismissal from the program. All students have an individual responsibility to know and understand the provisions of the *Academic Conduct Code*.

Special Needs or Assistance:

Please contact the Administrative Office immediately if you have a learning disability, a medical issue, or any other type of problem that prevents professors from seeing you have learned the course material. Our goal is to help you learn, not to penalize you for issues which mask your learning.

Course Schedule:

Week	Topics	Homework	Quiz	Exam
	Logic and proofs			
	Sentential Logic			
	Conditional and Biconditional Connectives			
1	Predicate Logic		Quiz 1	
	Mathematical Proofs			
	Proofs in Predicate Logic			
	Proof by Mathematical Induction			
	Sata and Counting			
	Sets and Counting			
	Basic Operations of Sets			
	Families of Sets	\ \ \	Quiz 2	
2	Counting			
	Cardinality of Sets			
	Uncountable Sets			First Midterm

	Larger Infinities and the ZFC Axioms		Exam
	Review for the first Midterm		
	Relations		
	Relations Order Relations		
	Equivalence Relations	 Quiz 3	
	The Function Relation		
3	Image of a Set		
	The Real and Complex Number Systems		
	Construction of the Real Numbers		
	The Complete Ordered Field		
	The Real and Complex Number Systems		
	Complex Numbers	 Quiz 4	Second
			Midterm
4	Review for Second Midterm		Exam
4	Topology		
	Introduction to Graph Theory		
	Directed Graphs		
	Geometric Topology		
	Point-Set Topology on the Real Line		
	Algebra		
	Symmetries and Algebraic Systems Introduction	 Quiz 5	Final Exam
	to the Algebraic Group Permutation Groups	Quiz 6	(Cumulative)
5	Subgroups: Groups Inside a Group		
	Rings and Fields		
	Course Summary and Review for Final Exam		